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Abstract

A new adaptive local mesh refinement method is presented for thin film flow problems containing moving contact lines.
Based on adaptation on an optimal interpolation error estimate in the Lp norm (1 < p 61) [L. Chen, P. Sun, J. Xu,
Multilevel homotopic adaptive finite element methods for convection dominated problems, in: Domain Decomposition
Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering 40 (2004) 459–468], we
obtain the optimal anisotropic adaptive meshes in terms of the Hessian matrix of the numerical solution. Such an aniso-
tropic mesh is optimal for anisotropic solutions like the solution of thin film equations on moving contact lines. Thin film
flow is described by an important type of nonlinear degenerate fourth order parabolic PDE. In this paper, we address the
algorithms and implementation of the new adaptive finite element method for solving such fourth order thin film equa-
tions. By means of the resulting algorithm, we are able to capture and resolve the moving contact lines very precisely
and efficiently without using any regularization method, even for the extreme degenerate cases, but with fewer grid points
and degrees of freedom in contrast to methods on a fixed mesh. As well, we compare the method theoretically and
computationally to the positivity-preserving finite difference scheme on a fixed uniform mesh which has proven useful
for solving the thin film problem.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Adaptive procedures for the numerical solution of partial differential equations (PDEs), actively investi-
gated since the late 1970s, are now standard tools in science and engineering – e.g. see [71] for references
on adaptivity for elliptic PDEs. Adaptive finite element methods (FEMs) are a particularly meaningful
approach for handling multiscale phenomena and making realistic computations feasible, especially on
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irregular domains and in higher spatial dimensions with complex boundary conditions, where a posteriori

error estimators are available as an essential ingredient of adaptivity. Such estimators are computable quan-
tities depending on the computed solution(s) and data which provide information about the quality of approx-
imation and may thus be used to make judicious mesh modifications. The ultimate purpose is to construct a
sequence of meshes which will eventually equidistribute the approximation errors and, as a consequence, the
computational effort. To this end, the a posteriori error estimators are split into element indicators which are
then employed to make local mesh modifications by refinement (and sometimes coarsening). This naturally
leads to loops of the form
Solve! Estimate! Refine: ð1:1Þ
Starting from a coarse mesh, such an iteration has been widely successful in applications. Nevertheless, except
for the rather complete description of the one-dimensional situation by Babuška and Rheinboldt [3], conver-
gence of (1.1) in the multidimensional case is still largely an open issue. The fundamental paper [38] of Dörfler
for the Poisson equation shows a linear error reduction rate for the energy norm towards a preassigned tol-
erance in finite steps. Recently Nochetto et al. [60] have constructed an adaptive FEM algorithm for elliptic
PDEs and proved its linear convergence rate for the energy norm. Any prescribed error tolerance is thus
achieved in a finite number of steps. It is in this context that there are some of the best current convergence
results for adaptive finite element methods. All of the above a posteriori error estimators fall into a class of
residual-type methods because they are all based on residual error on each element.

Besides the above developments for a posterior error estimators’ convergence analysis, there is an alterna-
tive approach to produce a similar effect, viz., constructing (nearly) optimal meshes for suitable order piece-
wise finite element interpolation of a given function through a priori interpolation error estimators.
Specifically, let X 2 Rn be a bounded domain, T a simplicial finite element mesh of X with a fixed number
N of elements, and uI a piecewise finite element interpolation of a given function u defined on X. An optimal
mesh could be obtained by minimizing the error |||u � uI||| in some sense, where the norm ||| Æ ||| is a classical
Sobolev space norm.

This approach can be traced back to de Boor [34,33] where the problem of the best approximation by free
knots splines was studied in one spatial dimension. In this work, the equidistribution principle was introduced
specifically for computing equidistributed meshes. Actually the concept of equidistribution was first used by
Burchard [21], and then by a number of researchers for studying grid adaptation. Pioneering work for adap-
tive finite element methods was done in [3] where a finite element mesh was shown nearly optimal in the sense
of minimizing the H1 norm error if the local errors are approximately equal for all elements. Thus, to get an
optimal mesh, elements where the error is large are marked for refinement, while elements with a small error
are left unchanged or coarsened.

Most of the adaptive finite element methods in the literature [4] are concerned with meshes that are shape-
regular (which in two dimensions means that no element has a very small angle). This type of shape-regular
finite elements is appropriate for physical problems that are fairly isotropic. But for many anisotropic prob-
lems (e.g. with sharp boundary layers or internal layers), the shape of elements can be further optimized, and
an equidistribution of a scalar error density is not sufficient to ensure that a mesh is optimally efficient [32].
Nadler [62] studied the optimal triangulation for the discontinuous piecewise linear approximation for a qua-
dratic function in the sense of minimizing error in the L2 norm. For this optimal mesh, each triangle is equi-
lateral under the Hessian metric, and the error is equidistributed on each triangle. The L1 case was studied by
D’Azevedo and Simpson [30,31]. In [31] they developed a local linear interpolation error formula for quadratic
functions. Based on this formula, D’Azevedo [30] obtained the same condition as Nadler’s. Thereafter aniso-
tropic mesh adaptation which aims to generate equilateral triangles under the metric induced by Hessian
matrix was developed in [20,48,37] and successfully applied to computational fluid dynamic problems in
two spatial dimensions [48,70].

Recently there have been some a priori interpolation error estimates for anisotropic finite elements
[2,56,42]. Apel [2] obtained some estimates under a condition on the coordinate orientation and on the max-
imal allowable mesh angle. Formaggia and Perotto [42] exploited the spectral properties of the affine map
from the reference triangle to the general triangle to get anisotropic estimates for the L2 and H1 interpolation
error on linear finite elements in two dimensions. Kunert [56] introduced the matching function to measure the
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alignment of an anisotropic function and an anisotropic mesh and presented error estimates using the match-
ing function. Yet the overall optimal convergence rate in terms of the number of degree of freedom is not easy
to get from these approaches.

Motivated by the fundamental papers of Huang [49,50], a general result which develops this approach of a
priori interpolation error estimators further is given by Chen et al. [28]. In this paper, a new local edge-based
error estimate and global interpolation error bound in the Lp (1 6 p 61) norm for any spatial dimension are
given. Specifically,
ku� uIkL pðXÞ 6 CN�2=nk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHÞn

p
k

L
pn

2pþnðXÞ
; ð1:2Þ
where N is the number of elements in the triangulation, the constant C is independent of u and N, and H is a
majorizing Hessian matrix of u. This estimate is optimal in the sense that it is a lower bound if u is strictly
convex or concave.

This estimate can be viewed as a modification and generalization of the special case p =1 in D’Azevedo
[30] and the case p = 2 in Huang and Sun [50]. By requiring the mesh to be quasi-uniform under the new metric
[det(H)]�1/(2p+n)H, the simplices become locally isotropic and their volumes are globally equidistributed under
the new metric. On the other hand, the same simplices may simultaneously transform back to be locally aniso-
tropic under the standard Euclidean metric if the majorizing Hessian matrix is anisotropic, or more specifi-
cally, if its eigenvalues differ markedly from each other.

The estimate (1.2) is the theoretical foundation of our method, as the new adaptive local mesh refinement
algorithm aims at minimizing (or at least reducing) this interpolation error by iteratively modifying the grids.
Then the corresponding generated adaptive mesh is able to anisotropically concentrate on the sharp interface
or boundary layer so that the solution singularities are fully resolved. The thin film fluid flow problem is
exactly such a case where the solution has anisotropic sharp internal layers.

While some numerical results are given in [27,28], no algorithm discussing how to adequately implement the
adaptive mesh method based on the new interpolation error estimator (1.2) is included. In this paper, we
describe a fairly detailed implementation for producing anisotropic adaptive locally refined meshes and the
techniques of local mesh improvement which aim at minimizing the interpolation error. We adopt the thin film
fluid flow problem, being typical of many realistic problems, to test our new adaptive finite element method.

Thin film flow problems, which lead to fourth order nonlinear degenerate parabolic equations [45,19,12,53],
represent just one type of interesting fourth order problems which have been of considerable recent interest
and for which adaptive numerical methods need to be developed and analyzed. One reason we study them
for our application is that not only do their solutions include natural moving contact lines – one kind of inter-
nal layers which need to be fully resolved in order to get accurate numerical solutions – but also because the
solution is relatively simply distributed, being almost constant except around the moving contact lines. We can
then use a local refined mesh only near contact lines and coarse meshes elsewhere. In contrast, fixed uniform
meshes can be unacceptable in higher spatial dimensions because of the relatively large spatial scale as com-
pared to the slim contact line regions and the long time scale (starting from the initial data to rupture and
afterwards). Our adaptive local anisotropic mesh refinement algorithm based on minimizing the interpolation
error (1.2) is able to efficiently overcome these difficulties and accurately solve the problem.

The paper is organized as follows. In Section 2 we present an interpolation error estimate and show that it is
also a lower bound for convex or concave functions. In Section 3 we describe in detail the numerical implemen-
tation of the adaptive mesh method based upon the above interpolation error estimate, and we develop local
mesh improvement techniques such as refinement, coarsening and smoothing strategies which aim to minimize
the interpolation error. In Section 4 we introduce the thin film fluid flow problem, give its background and solu-
tion properties, and review previous efforts for solving it numerically. An implementation of our new adaptive
local refinement method is given in Section 5. Some concluding remarks are made in Section 6.

2. Theoretical foundation

In this section, we give an interpolation error estimate derived by Chen et al. [28] which provides the the-
oretical foundation for our algorithm based upon minimizing (or at least reducing) this interpolation error by
iteratively modifying the grids.
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The estimate. Let X be a bounded domain in Rn. Given a function u 2 C2ðXÞ, a symmetric positive definite
matrix H 2 Rn·n is majorizing the Hessian of u if
jntðr2uÞðxÞnj 6 c0n
tHðxÞn; n 2 Rn; x 2 X; ð2:1Þ
for some positive constant c0.
One example of H can be constructed as follows: Given the Hessian $2u = Qtdiag(ri)Q, define
H ¼ QtdiagðjrijÞQþ dI ; d P 0: ð2:2Þ

It is easy to see that H is a majorizing Hessian matrix of u satisfying (2.1) with c0 = 1 for any d > 0. When $2u

is singular, the positive parameter d is critical to control the variation of H. A careful analysis in Huang [49]
shows that d can be used to control the ratio of mesh points in the singular region and smooth region of the
function.

There are two conditions for a triangulation TN , where N is the number of simplexes, to be a nearly opti-
mal mesh in the sense of minimizing the interpolation error in the Lp norm. The first requires the mesh to cap-
ture the high oscillation of the Hessian metric, viz., H does not change very much on each element.

(A1) There exist two positive constants a0 and a1 such that
a0n
tH sn 6 ntHðxÞn 6 a1n

tH sn; n 2 Rn;
where Hs is the average of H over s, i.e.,
H s ¼
1

jsj

Z
s

HðxÞdx:
The majorizing Hessian H can be used to define a new metric
H p ¼ ðdet HÞ�
1

2pþnH ; p P 1; ð2:3Þ

which is called a scaled majorizing Hessian matrix as well. This Hp defines a Riemannian metric on X, with
corresponding edge length ~ds;ij and element volume j~sj. Specifically, given a simplex s with vertices fakgnþ1

k¼1,
denoting the edge vector lij = ai � aj, the edge length under this new metric is defined by
~ds;ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lt

ijH s;plij

q
; ð2:4Þ
and the new element volume is denoted as
j~sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det H s;p

p
jsj; ð2:5Þ
where
H s;p ¼ ½detðH sÞ��
1

2pþnH s; 8s 2TN : ð2:6Þ

The second condition asks that TN be quasi-uniform under the new metric induced by Hp.
(A2) There exist two positive constants b0 and b1 such that
P

i
~d2

s;i

j~sj2=n
6 b0; 8s 2TN and

maxs2Tj~sj
mins2Tj~sj

6 b1; ð2:7Þ
where j~sj is the volume of s and ~ds;i is the length of the ith edge of s under the new metric Hp, respectively.
The first inequality in (2.7) means that each s is shape-regular under the metric Hs,p in that all edges of s are

of comparable size. This is related to the so-called isotropy criterion. The second inequality in (2.7) means that
all elements s are of comparable size (under the new metric), which is a global condition since it means that the
mesh will concentrate at regions where detHp(x) is large. This is related to the so-called equidistribution cri-
terion. Thus, the condition (2.7) is consistent with viewing isotropy and equidistribution criteria as the two
keys for developing our adaptive mesh strategy, a basic approach taken in Huang [49].

Theorem 1. Let u 2 C2ðXÞ, TN satisfy assumptions (A1) and (A2) and uI be the linear finite element interpolation

of u based on the triangulation TN . Then the following error estimate holds:
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ku� uIkLpðXÞ 6 CN�2=nk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHÞn

p
k

L
pn

2pþnðXÞ
ð2:8Þ
for some constant C = C(n, p, c0, a0, a1, b0, b1). This error estimate is optimal in the sense that for a strictly con-
vex (or concave) function, the above inequality holds in the reverse direction.

As mentioned before, Theorem 1 will be the basis of the grid adaptation algorithm. Roughly speaking, for a
given function u, we will adapt our grids in such a way that the assumptions (A1) and (A2) will be more and
more closely satisfied.

Optimality of the result: a lower bound. For a family of triangulations TN of X we define
hN ¼ max
s2TN

diamðsÞ;
and
qN ¼
max ~ds;i

min ~ds;i

:

All edges f~ds;ig are asymptotically equal if limN!1qN = 1.
The error estimate (2.8) is in some sense sharp for strictly convex (or concave) functions as shown in the

following theorem from [28].

Theorem 2. Assume that u 2 C2ðXÞ is a strictly convex (or concave) function and fTNg is a family of

triangulations of X satisfying limN!1hN = 0. Then
lim inf
N!1

N
2
Nku� uIkLpðXÞ;N P Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHÞn

p
k

L
pn

2pþnðXÞ
ð2:9Þ
for some constant C = C(p,n). Furthermore, the equality holds if all edges in fTNg are asymptotically equal un-

der the new metric, viz., limN!1qN = 1.

With this theorem, it becomes possible now to do the adaptive local mesh coarsening by basing it on the
above lower bound estimate (2.9).
3. General implementation issues

In this section, we elaborate on our new adaptive local mesh refinement method. Recall that our goal is
to construct a quasi-uniform mesh under the new metric (2.3). Our strategy is to do the local refinement on
a coarse grid by equidistributing the interpolation error in the whole triangulation, viz., we make the edge
lengths of each triangle element under the new metric equal to each other. In grid generation, one often
begins with a uniform or regular (in the Euclidean metric) grid which usually is not regular under the
new metric. As a result, local refinement is needed to get a more regular (under the new metric) grid, which
means, isotropy and equidistribution. Using the local edge-based error estimator in the previous section, a
natural way to do the local refinement is to split edges with longer length to shorter ones under the new
metric (2.4).

In general, a residual-type error estimator gives us an a posteriori error estimate based on the numerical
solution uh [38,60]. Our local edge-based error estimate is actually an interpolation error estimate (1.2) in
which the Hessian matrix is of the real solution u instead of uh. Strictly speaking (1.2) is not an a posteriori
error estimate. But on the other hand, the interpolation error estimate builds the convergence rate on the num-
ber of elements N instead of the mesh size h, which is associated with adaptive local mesh refinement. In the
asymptotic sense we could use uh instead of u to compute the Hessian matrix and the new edge length under
the new metric. Because we know the value of uh exactly on each node, the Hessian matrix of uh and the new
edge length under the new metric (2.4) are all computable. The longer the edge length, the finer the local mesh
refinement done in that element via bisection techniques. Asymptotically uh will approximate u, and eventually
an accurate adaptive locally refined mesh is obtained.
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In order to calculate the new edge length (2.4), we by definition need to get the Hessian matrix first. Since
taking piecewise second derivatives of piecewise linear functions will give no meaningful approximation to the
Hessian matrix, special post processing techniques are needed to obtain a reasonable Hessian matrix approx-
imation for linear finite elements. (Obviously, for higher order piecewise polynomials, a Hessian matrix
approximation is easy to obtain.) In the next section, we discuss how the Hessian matrix of the numerical solu-
tion can be obtained for a linear finite element approximation.
3.1. Post processing: recovery of Hessian

A C0 finite element solution uh has a discontinuous gradient $uh. In an attempt to better obtain a approx-
imation than $uh, we shall consider an effective method which constructs a continuous gradient
Ghuh 2 Sh · Sh, called the recovered gradient. Since any function in Sh is completely defined by its nodal val-
ues, it suffices to define Ghuh at the mesh nodes. This definition depends on the node location in X.

Several robust recovery methods to get the recovered gradient have been suggested in the literature. In the
following we discuss them in some detail:

(I) Superconvergence Patch Recovery method. One of the most popular techniques is the Superconvergence
Patch Recovery (SPR) technique proposed by Zienkiewicz and Zhu [79,80] which is based on least
squares fitting locally. ZZ-SPR is used to recover a gradient from the gradient of the finite element solu-
tion. Results from their applications demonstrate that it is robust and efficient.
The definition of the SPR-recovered gradient at a mesh node z is as follows:
� If z 2 X, we use a patch xz consisting of the triangles attached to z. To recover the x-derivative at z, we

find a polynomial px 2 P1(xz) that best fits, in the least squares sense, oxuh at the triangle’s centroids in
xz. The recovered x-derivative at z is defined to be px(z). Similarly, we can define the recovered y-deriv-
ative at z.
� If z 2 oX, let z1; z2; . . . ; zNz;s denote the mesh nodes in X that are directly connected to z. Let xi be the

patch associated with zi for i = 1, 2, . . . ,Nz,s and let px,i 2 P1(xi) be the polynomial that best fits oxuh

sampled at the triangles’ centroids in xi. Again, the patch xi consists of the triangles attached to zi. The

recovered x-derivative at z is defined to be 1
Nz;s

PNz;s
i¼1 px;iðzÞ. Similarly, we can define the recovered y-

derivative at z.

� If z 2 oX with no attached internal nodes, the recovered gradient at z is defined to be $uh(z).
(II) Polynomial Preserving Recovery method. The Polynomial Preserving Recovery (PPR) is a new gradient

recovery technique [76] that can be used to recover a superconvergent gradient under some mild con-
ditions imposed on the mesh, as was shown in [77]. This motivates the use of the PPR-recovered gra-
dient in building an asymptotically exact a posteriori error estimator (the PPR estimator). Tests
indicate it is as good as or better than the estimator based on the SPR-recovered gradient (ZZ-SPR
estimator).
The construction of the PPR-recovered gradient at mesh nodes proceeds in two stages. In the first
stage mesh nodes in X are considered while mesh nodes on oX are considered in the second stage.
� Stage 1 As in SPR, we use a patch xz consisting of the triangles attached to z. To recover the gradient

at z, we find a polynomial p 2 P2(xz) that best fits uh sampled at the mesh nodes in xz, in the least
squares sense, and Ghuh(z) is defined to be $p(z). To get p, xz must contain at least 6 mesh nodes.
If this is not the case and if xz does not share any edges with oX, xz is extended by adding every tri-
angle sharing an edge with xz. If xz has less than 6 mesh nodes with some of its edges on oX, recovering
the gradient at z is delayed to Stage 2.
� Stage 2 Basically this stage uses the gradient recovered in the first stage and linear extrapolation to

complete the gradient recovery at the rest of the mesh nodes. Let Nh,0 be the set of mesh nodes left
in Stage 1 without recovery, which includes those on oX. The gradient recovery is completed in a
finite number of iterations where every iteration proceeds as follows: The iteration starts by defin-
ing Th;0 2Th where a mesh triangle s 2Th;0 if and only if Ghuh is defined at each of its vertices.
For z 2 Nh,0, let xz be the patch consisting of the triangles attached to z. We have two cases.
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1. The patch xz has common edges with triangles s1; s2; . . . ; sNz;p in Th;0. Let xsi denote the union of the
triangles in Th;0 that have common edges with si along with si. Note that xsi has at least four nodes
for which Ghuh is well-defined. Using least squares, we can find the linear polynomial qx;i 2 P 1ðxsiÞ that
best fits the x-components of Ghuh at the mesh nodes in xsi . The recovered x-derivative at z is defined to
be 1

Nz;p

PNz;p

i¼1 qx;iðzÞ. The recovered y-derivative at z is defined in a similar way.
2. The patch xz has no common edges with triangles in Th;0. In this case z is left for another iteration

where it is added to Nh,1, a set taken to be empty at the beginning of the iteration.
After going over all the nodes in Nh,0, if Nh,1 is empty, we are done; otherwise, we set Nh,0 = Nh,1 and
start another iteration.
(III) Global L2 projection. The theoretical reason why the SPR and PPR methods work is related to the super-
convergence phenomenon for second order elliptic boundary value problems discretized on a finite ele-
ment grid having certain local symmetry (see Wahlbin [72], Chen and Huang [25] and Babuška and
Strouboulis [4]). These classic superconvergence results can be used to justify the effectiveness of the
ZZ-SPR and PPR recovery methods, e.g. see [75,59] for nearly structured grids.

A significant improvement of this type of analysis was given recently by Bank and Xu [7,8]. In [7] super-
convergence estimates are given for piecewise linear finite element approximation on quasi-uniform triangular
meshes, where most pairs of triangles sharing a common edge form approximate parallelograms. In [8] they
use the smoothing iteration of the multigrid method to develop a post processing gradient recovery scheme.
This scheme has proven to be very efficient for recovering the Hessian matrix, showing that Qh$uh is a super-
convergent approximation to $u. Here, Qh is the global L2 projection. This result leads to a theoretical justi-
fication of the ZZ-SPR method for such types of grids – see Xu and Zhang [74].

Based on the well known standard L2 projection operator Qh: L2! Sh, the definition of the global L2 pro-
jection-recovered gradient is as follows: suppose that the numerical solution uh 2 Sh has been obtained, so
$uh � L2. We find Qh$uh 2 Sh such that
ðruh � Qhruh; vhÞ ¼ 0; 8vh 2 Sh; ð3:1Þ
where (Æ,Æ) is the inner product, and Sh � P1 is the piecewise linear finite element space. Then we can discretize
(3.1) by summing up the local inner products in each element s 2Th for the right hand side only, i.e.,
Z

X
ðQhruhÞvh dx ¼

X
s

Z
s
ruhvh dx; 8vh 2 Sh: ð3:2Þ
Since $uh is constant in each element s, it is discontinuous while crossing the edge of each element, but it is still
well defined in each local element. We can then get the appropriate right-hand side of (3.2) directly. By means
of standard finite element approximation, the linear algebraic system with respect to the unknown Qh$uh is
MrU ¼ F ; ð3:3Þ
where M = ((/i,/j))N·N is the mass matrix, /i 2 Sh (i = 1, 2, . . . ,N) are piecewise linear nodal basis functions,

$U = ($xU,$yU)T is the vector of unknown recovered gradients in which $xU and $yU are defined at each
mesh node, and F ¼ ðF x; F yÞT; F x ¼

P
s

R
srxuh/j dx; F y ¼

P
s

R
sryuh/j dx; j ¼ 1; 2; . . . ;N .

By carefully choosing the weight function for the matrix M in the lumping mass method, we are able to get
a diagonal mass matrix. The numerical solution Qh$uh is then directly found without solving a linear algebraic
system. We describe below a generic method for choosing the weight coefficient for each node in a triangle
while using the lumping mass method.

We just consider the scheme on a reference triangle element, namely an isosceles right triangle with unit
length for the two equal sides, so its area is 1

2
. The basic idea is to equidistribute the area on each node in terms

of the associated relationship among the nodes in the reference triangle element. First, one determines how
many small equilateral triangles can be generated between other nodes and the node of interest. For a given
order finite element on a triangle, assume that in addition to the three vertices there are m points on each edge,
and each point on the edge has ke small surrounding equilateral triangles which are gained by connecting this
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middle point with other associated points. Moreover, there are n interior points inside the triangle, and each
one has kc small surrounding equilateral triangles gotten from its patch. For instance, m = n = 0, ke = kc = 0
in the linear case, m = 1, n = 0, ke = 2, kc = 0 in the quadratic case, and m = 3, n = 1, ke = 3, kc = 6 in the
cubic case. Let w be the weight coefficient of a vertex, which is also the basic weight for a single point. Then
the formula for the weight coefficient of each point is
3wþ mkewþ nkcw ¼
1

2
;

so the weight for vertices is
w ¼ 1

2ð3þ mke þ nkcÞ
:

Consequently, the weight is kew for each point on the edge and kcw for each interior point in the triangle.
All of the above gradient recovery methods can be extended to anisotropic grids with proper modifications,

but a theoretical justification of such extensions is still lacking. Nevertheless, numerical experiments have
given satisfactory results.

The gradient recovery algorithm adopted in this paper is based on a global L2 projection approach. It has
been proven in practice that the L2 projection method is much easier to implement, efficient, and has fairly
good recovery for the gradient too, although theoretically the Zienkiewicz–Zhu scheme and Polynomial Pre-
serving Recovery method may have higher accuracy and better approximation on the boundary.

By means of the above gradient recovery techniques, once we get the recovered gradient Qh$uh, we can keep
doing the same post processing for Qh$uh to get its recovered Hessian matrix Qh$(Qh$uh). This is one approx-
imation for a linear finite element, which is the case considered here. For a quadratic finite element, it is better
to obtain the Hessian matrix by doing the post processing with Qh$

2uh.
For the majorizing Hessian matrix Hp, we use our edge-based local refinement method following (2.2) and

(2.3), where we do the eigen decomposition for the n · n matrix Qh$(Qh$uh), taking absolute values for its eigen-
values, and add dI as in (2.2) to ensure the recovered Hessian matrix Hp is eventually symmetric positive definite.

3.2. Mesh adaptation

In this section, we discuss techniques which aim at improving the mesh quality. Here we define the mesh
quality for a triangulation T using the interpolation error
QðT; u; pÞ ¼ ku� uI;TkLpðXÞ; 1 6 p 61:
Local improvements. There are mainly three types of mesh improvements: (1) refinement or coarsening, viz.,
split or merge edges [5,64,55], (2) edge swapping: replace sets of elements by other such sets, while preserving
the position of the points [57] and (3) mesh local smoothing, viz., move the vertices of the mesh while keeping
the connectivity [41,6,65,44]. We derive these techniques by minimizing the interpolation error in the Lp norm,
which can be achieved by equidistributing edge lengths under the new metric.

Thus, we compute edge lengths under the new metric Hp via (2.4) and mark edges whose length is greater
than r1d, where r1 P 1 is a parameter and d is a fixed edge length. Usually we adopt the global average edge
length as the fixed d. A given parameter r1 is used to control the density of local adaptive meshes. It can be
chosen as sequentially decreasing, starting from a relatively large number and gradually decreasing to, say, 1.
Thus a better locally refined mesh can be gained by more tightly concentrating around the singular regions.

Such edge-based local mesh refinement has at least two advantages:

1. The anisotropic mesh can be automatically generated in terms of the new edge length defined by majorizing
the Hessian matrix. By means of the longest edge principle, bisection always happens on the longest edge
length under the new metric, where the Hessian matrix is large due to the solution’s singularity. For
instance, for a sharp interface, the locally refined mesh will be automatically stretched along the interface.
We connect marked edges element-wise according to the situation, as shown in Fig. 1.
Bisecting the marked element in this way, we get an anisotropic locally refined mesh mainly along the sin-
gular direction, i.e., the direction in which the Hessian matrix of the solution is sufficiently large.
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2. In contrast to the residual-type a posteriori error estimates, there is no pollution with this refinement strat-
egy. Based on the longest edge principle, we usually need to bisect more elements around the marked ele-
ment in order to get a conforming mesh for a residual-type estimator. But for the marked element given by
our new local edge-based estimator, we only need to bisect the adjacent element which shares the same
edge, because it always has the same longest edge based on our theory of the edge-based local mesh refine-
ment. There is no more bisection for other adjacent elements, which means that the generated locally
refined meshes are all necessarily much more concentrated in singular regions than elsewhere. This is unlike
the residual-type estimator, where more unnecessary locally refined meshes come into being due to the need
for conforming the meshes instead of actually resolving singularities, which is the main goal of the mesh
adaptivity.

The coarsening operates like an inverse procedure to refinement. It marks a triangle whose length is less
than r2d for some parameter r2 6 1. We then shrink this edge to a point and connect the vertices of the patch
of the edge (see Fig. 2).

Now we consider the edge swapping for four points fvig4
i¼1 which form two adjacent triangles and a convex

quadrilateral as shown in Fig. 3. Let T1 ¼ D123 [ D134 and T2 ¼ D124 [ D234, where Dijk stands for the triangle
made up of vi, vj and vk. We choose triangulation T1 if and only if QðT1; u; pÞ 6 QðT2; u; pÞ, for some
1 6 p 61. In the implementation, we calculate the area of two quadrilaterals T1 and T2 in terms of the
new edge length under the new metric and choose the one with smaller area as the edge swapped triangulation.
Thus, it is a suitable generalization of the edge swapping used in the isotropic case to the anisotropic case, with
a change in the metric, namely the method of defining the edge length.

Local mesh smoothing adjusts the location of a vertex in its patch Xi, which consists of all simplexes con-
taining vertex xi, without changing the connectivity. Moving a vertex to the new location improves the mesh
quality. Several sweeps through the whole mesh can be performed to improve the overall mesh quality. By
minimizing the interpolation error in Xi, we move xi to x* such that
ruðx�Þ ¼ � 1

jXij
X
sj2Xi

rxi jsjj
X

xk2sj;xk 6¼xi

uðxkÞ
 !

: ð3:4Þ
where u 2 C1(X) is a convex function.
Fig. 2. Coarsening.

Fig. 3. Edge swapping.
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The significance of (3.4) is that we can recover the derivative exactly from the nodal values of the function if
the triangulation is optimized. With the gradient information, we can approximate u by higher degree poly-
nomials or construct an a posteriori error indicator. In practice, this is applied to the numerical solution,
so we use Qh$uh and uh in (3.4) to perform the calculation.

If the triangulation is not optimized, (3.4) can be used to solve for the critical point, and the critical point
can be used as the new location for the mesh smoother. When u(x) = uH(x) :¼ xTHx is a nondegenerate qua-
dratic function, i.e. H is a n · n nonsingular matrix, we can solve for the critical point exactly and get a mesh
smoother based on optimal Delaunay triangulations (ODTs) [26]. Especially when the goal of the mesh adap-
tation is to get a uniform and shape regular mesh, we choose u(x) = ||x||2 and get the smoother for uniform
density
x� ¼ � 1

2jXij
X
sj2Xi

rxi jsjj
X

xk2sj;xk 6¼xi

kxkk2

 !
ð3:5Þ
(for more details, see [26]).
Using local smoothing for the above local improvement techniques, we can get a more anisotropic locally

refined mesh.
4. Thin film fluid flows

Many physical phenomena exhibit strong anisotropic behaviors, e.g. boundary layer flows in porous media,
currents and concentrations in fuel cells, characteristics of semiconductors, and stresses and strains in thin
plates, shells and anisotropic materials. When an anisotropic phenomenon occurs and an accurate approxima-
tion is required, it is natural to use stretched anisotropic meshes according to the variation of the solution.
This reduces the number of elements needed to partition the domain, better captures the solution behavior,
and thus leads to much more efficient algorithms. A thin film fluid flow problem is one type of anisotropic
physical problem where local solution difficulties make use of mesh adaptivity very attractive vis a vis obtain-
ing a numerical solution accurately and efficiently.

In recent years several mathematical models in fluid dynamics, materials science and plasticity have led to
fourth order nonlinear degenerate parabolic equations. We mention, for example, the lubrication approxima-
tion for thin viscous films [45,19,12], the Cahn–Hilliard equation with a degenerate mobility ([22,39,40]) and
models that describe dislocation densities in plasticity ([46]). There has been considerable effort to analytically
understand degenerate parabolic equations of higher order. There have been a number of numerical experi-
ments for the thin viscous film equation in one space dimension (e.g. see [19,14,1]). These are extended to
higher dimensions in [53,35], but only for a fixed uniform grid with a finite difference method. Even for the
1D case, the adaptive mesh method used in [14] is a so-called self similar adaptive mesh scheme and only han-
dles a known singularity. There is no a posteriori error estimator, and this approach does not easily extend to
the higher dimensional case with complex solution structure.

Accurately locating the contact lines for a thin film fluid is important in order to avoid premature rupture
[18]. The most popular way to do this has been to use the h-version of adaptivity, where more grid points con-
centrated around the contact line results in more accurate computation. A uniformly distributed mesh
throughout the domain is unsuitable because too many grid points in the smooth regions away from the con-
tact line produce unnecessary computational cost. Also, when schemes of this type are used to compute finite
time singularities describing things such as film rupture [19] or neck rupture in a Hele–Shaw cell [1], lack of
further local mesh refinement prevents resolving small scale structures near the point of singularity.
4.1. Description of model

Driven films exhibit a variety of complicated dynamics ranging from rivulets and sawtooth patterns in grav-
ity driven flows [52,66] to patterns in spin coating [43] and surfactant driven films [69]. A theoretical frame-
work for these problems is provided by a lubrication approximation of the Navier–Stokes equations
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[61,45]. This yields a single partial differential equation for the film thickness as a function in time of position
on the solid substrate.

For directionally driven films, the driving force enters into the lubrication approximation as the flux F in a
scalar hyperbolic conservation law ut + (F(u))x = 0. Here u > 0 is the film thickness and x is the direction of the
driving force. For gravity driven flow on an incline, the tangential component of gravity yields a flux propor-
tional to u3 [51]. For surface-tension gradient driven flows F is proportional to u2 [24]. In each of these cases,
the flux is convex. Consequently, driven fronts in the film correspond to compressive shock solutions, whose
simplest form is
uðx; tÞ ¼
u�; if x < st;

uþ; if x > st;

�
ð4:1Þ
in which the shock speed s = (F(u�) � F(u+))/(u� � u+) satisfies the entropy condition
F 0ðuþÞ < s < F 0ðu�Þ; ð4:2Þ

equivalently, characteristics enter the shock on each side. Small variations in height near a compressive shock
are propagated towards the shock from both sides.

In practice, the discontinuous fronts (4.1) are smoothed by diffusive effects, primarily through surface ten-
sion. In the lubrication approximation, surface tension appears as a fourth order nonlinear regularization of
the conservation law, but there is also second order nonlinear diffusion induced by the component of gravity
normal to the incline, leading to the equation
ut þ ðF ðuÞÞx ¼ �cr � ðu3rDuÞ þ br � ðu3ruÞ: ð4:3Þ
In this equation, c > 0 and b P 0 are constants. The shock waves (4.1) correspond to smooth travelling
wave solutions of (4.3); for small b P 0, they typically have oscillatory overshoots and undershoots on
either side of the shock. Additionally, the nonlinearity in the fourth order diffusion causes a single very pro-
nounced overshoot or ‘‘bump’’ on the leading edge of the shock (see Fig. 1(a) of [15]); this structure is often
referred to as a capillary ridge in experiments. Capillary ridges produced by surface tension are well known
to be linearly unstable to long-wave perturbations in the transverse direction of the flow, producing the
well-known fingering instability [23,68]. The effect of larger b is to suppress the bump (see Fig. 1(b) of
[15]). The disappearance of the bump (for b sufficiently large) is accompanied by a transverse stabilization
of the wave [18].

In this paper, we specifically focus on the travelling wave solutions u(x,t) of a thin film flow equation of the
form
ut þ ðF ðuÞÞx ¼ �r � ðDðuÞrDuÞ þ r � ðGðuÞruÞ; in XT :¼ X� ð0; T �;
uðx; tÞ ¼ uBðx; tÞ; on oX1 � ð0; T �;
ou
om ¼ 0; on oX=X1 � ð0; T �;
uðx; 0Þ ¼ u0ðxÞ; 8x 2 X;

8>>><>>>: ð4:4Þ
where
F ðuÞ ¼ aun; GðuÞ ¼ bun; DðuÞ ¼ cun; a P 0; b P 0; c > 0: ð4:5Þ
Here, we apply mixed boundary conditions on oX. The Dirichlet boundary condition uB(x, t) is usually given
on the upstream and downstream boundary. In the rest of the paper n denotes the power of u in (4.5).

The PDE in (4.4) is derived in [45] as a model for the surface tension dominated motion of thin viscous films
and spreading droplets. For such problems, the power n depends on the boundary condition on the liquid solid
interface: no-slip gives n = 3 while various Navier slip conditions can yield n < 3. The same equation in one
space dimension with D(u) = u is also shown to model a thin neck in the Hele–Shaw cell [29]. Other applica-
tions include Cahn–Hilliard models with degenerate mobility [39], population dynamics [58], and problems in
plasticity [46]. In all examples, in order to have a physical solution, u must be nonnegative.

While second order degenerate diffusion equations satisfy a maximum principle guaranteeing that solutions
are bounded from above and below by their initial data, the fourth order analogue (4.4) does not possess such
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a property even for D(u) = 1. In particular, positive initial data can easily lead to solutions which change sign.
This occurs for the Cauchy problem with L2(Rd) initial data.

What is unusual about (4.4) is that for sufficiently large values of n, the equation does preserve positivity of
the solution. This was proven in one space dimension for n P 4 [13] and later extended to n P 3.5 [19]. For the
two-dimensional (2D) problem, numerical computations of thin film flows suggest the same may be true.
However, for smaller values of n > 0, numerical simulations [19,17,1] show that solutions can develop singu-
larities of the form u! 0, which physically describe the rupture of the liquid film. If the singularity forms in
finite time, then the solution past this time can be defined through a regularization method [13,16,11] as a limit
of strictly positive smooth solutions of regularized problems.

The nonlinear structure of the PDE presents a challenge in the design of efficient and accurate numerical
methods. Even when the analytical solution is strictly positive, the numerical solution for a generic scheme
may become negative, especially when the grid is under-resolved. Since the PDE becomes degenerate as
u! 0 this may lead to numerical instabilities. When a positive approximation of the solution is desired, it
may be necessary to do computationally local mesh refinement near the minimum of the solution in order
to avoid such premature or ‘‘false’’ singularities [19]. Physically important examples of situations for which
such singularities may arise include flow down an inclined plane [18], where resolution is required at the appar-
ent contact line [14].

The remainder of this paper focusses on efficient numerical solution of the thin film flow equation (4.4).

4.2. Basics, challenges, and techniques

One faces a number of potential difficulties when computing solutions to fourth order PDEs. The dynamics
depend highly on the smoothness of initial data. Fourth order equations require prescribing more boundary
conditions than for second order equations, and these can be higher order and consequently often difficult to
implement. Time stepping can also be a crucial matter for fourth order equations, where stability requirements
for explicit time step methods need be on the order of h4, where h is the grid size, instead of h2 as for second
order problems. This can make the explicit schemes prohibitively expensive. On the other hand, implicit
schemes require the inversion of a linear system of equations that is typically very large for fourth order equa-
tions. The literature for fourth order PDEs in arbitrary smooth domains is still in its infancy, although a num-
ber of numerical tools, including ADI, spectral, and finite element methods have proven successful for fourth
order diffusion equations occurring in areas such as thin film fluid flow and materials science, [9,47,73,78]. We
consider an adaptive finite element method (AFEM) and show how AFEM performs for solving the thin film
fluid flow problem described in (4.4).

Almost all of the work on numerical simulation for the thin film equation (4.4) has used finite difference
schemes, although the more flexible finite element method is used in [78,9]. In [78] a positivity-preserving
scheme (PPS), a kind of modified finite difference scheme, is presented. By introducing a discrete inner product
instead of a continuous one, it is also shown that PPS can be considered as a special case of the general finite
element approximation. In this paper, we show that using a suitable numerical quadrature, a finite element
approximation is equivalent to the positivity-preserving scheme. In [9], a nonnegativity-preserving finite ele-
ment method is proposed. Nonnegativity of the solution is imposed as a constraint, so one has to solve a var-
iational problem involving a Lagrange multiplier at every time step to advance the nonnegative solution. The
advantage of using this method lies in the fact that computation of nonnegative solutions requires no regular-
ization of the PDE or initial condition, which seems particularly useful for tracking the moving contact lines.
However, this method allows for solutions with positive initial data to lose positivity, which makes it less capa-
ble of capturing singularity formation comparable to that for the positivity-preserving scheme described in [78].

It is well known that in contrast to the finite difference method, the finite element method can be suited to
convenient numerical solution of PDEs on arbitrary domains using complicated mesh structures. Since mesh
adaptivity creates nonuniform meshes, locally concentrating grid points where solution singularities occur, the
finite element method is well suited to our purpose. In the following sections, we explore how the adaptive
finite element method performs on the thin film equation (4.4) using local mesh refinement to resolve small
scale structures near the singularity produced by a moving contact line. More explicitly, we adopt the frame-
work of the finite element method proposed in [78] and extend the method to use adaptive meshes.
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In [36] the simpler thin film equation
ou
ot
¼ �r � ðunrDuÞ; ð4:6Þ
which includes only capillary effects, is considered for various values of n. This is the special case of (4.4) with
a = 0, b = 0 and c = 1.

Using an entropy function, it is shown in [13,19] that in the planar case (one space dimension) positive initial
conditions always yield a positive solution for sufficiently large n. A practical importance of this fact is that one
can construct a nonnegative solution of the PDE for relatively small values of n by using a modified version of
the diffusivity D(u), lifting of the initial condition, and passing to the limit. This fact has been proven for the
planar case [11,16]. This regularization procedure involves replacing the diffusivity D by the modified diffusivity
eDðuÞ ¼ DðuÞu4

eDðuÞ þ u4
ð4:7Þ
and the nonnegative initial profile u(x, 0) with an artificially lifted one u(x, 0) + b (where b is small and does not
represent a physical precursor). Since eDðuÞ ! DðuÞ as e! 0, and eDðuÞ ! u4=e as u! 0 (for n < 4), this guar-
antees positivity of the regularized solution.

It is shown in [36] that for n = 1 the numerical solutions are convergent if the positivity-preserving scheme
(PPS) plus regularization are employed, and using a standard finite difference scheme (SS) for the interpolation
of the diffusivity fails. For n = 2, SS and PPS become coincident for small Dx. However, both schemes show
that the computation must be done with very small Dx(<10�3), in order to obtain a converged solution as
b! 0. For n = 3, [36] indicates that, by means of the precursor film model, both SS and PPS seem appropriate
to perform the simulation. The only (but important) difference is that PPS converges faster, although it is less
accurate than SS for large Dx. The conclusion is that the use of the precursor film model is highly advisable.

In this paper, we also use the precursor film model in our AFEM simulation. This is a crucial point for the
thin film flow equation in order to preserve the positivity of the solution starting from the initial time. Using
anisotropic adaptive mesh techniques, we aim to eliminate or weaken the regularization condition (4.7) and
still get the always positive solution, but for much smaller e.

5. Mixed finite element method for fourth order PDE

In principle, there are a number of natural finite element methods to numerically solve fourth order PDEs.
One is the standard FEM with high order piecewise polynomials which include derivatives as degrees of free-
dom – say, the cubic Hermite elements; another is the mixed finite element method. Considering the difficulties
of constructing a Hermite element in an arbitrary triangular element or a tetrahedron element in the 3D case,
we prefer the mixed finite element method. For a fourth order PDE with a sufficiently smooth solution, namely
u 2 H4(X), by introducing auxiliary variables of second order derivatives, the mixed method is able to reduce
the original fourth order PDE to an elliptic equation system. The well known integrated theory of mixed finite
element methods can guarantee an unique numerical solution exists [63], and the well-posed thin film flow Eq.
(4.4) falls within its theoretical framework.

In the following, we more precisely formulate the mixed finite element approximation for (4.4). In order to
achieve this, we introduce a potential w and write the fourth order parabolic equation as a system of second
order equations
ou
ot �r � ðunrwÞ þ ðaunÞx ¼ 0; in XT ;

w ¼ �cDuþ bu; in XT ;

uðx; tÞ ¼ uBðx; tÞ; on oX1 � ð0; T �;
ou
om ¼ 0; on oX=X1 � ð0; T �;
ow
om ¼ 0; on oX� ð0; T �;
uðx; 0Þ ¼ u0ðxÞ; 8x 2 X;

8>>>>>>>><>>>>>>>>:
ð5:1Þ
where the second equation holds for positive u.
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We consider the finite element approximation under the following assumptions on the mesh: Let X be a
polyhedral domain and Th be a triangulation of X into disjoint open simplices j with hj = diam(j) and
h :¼ maxj2Th hj, so that X ¼ [j2Thj.

Associated with Th is the finite element space
Sh :¼ fv 2 CðXÞ : vjj is linear 8j 2Thg � H 1ðXÞ:
Let J be the set of nodes of Th and {xj}j2J the coordinates of these nodes. Let {vj}j2J be the standard basis
functions for Sh, i.e. vj(xi) = dij for all i,j 2 J.

Given a positive integer N, let Dt :¼ T/N denote the time step and tj :¼ jDt, j = 1! N. We have considered
two practical finite element discretizations of (4.4) which are combined with the Backward Euler scheme to
approximate the time derivative ou

ot. The first is Picard iteration.
For j P 1, find {Uj,Wj} 2 Sh · Sh such that
Uj�Uj�1

Dt ; v
� �

þ ðU n
j�1rW j;rvÞ � ðaUn�1

j�1 Uj; vxÞ ¼ 0; 8v 2 Sh;

cðrU j;rvÞ þ bðU j; vÞ � ðW j; vÞ ¼ 0; 8v 2 Sh;

8<: ð5:2Þ
where U0 2 Sh is an interpolant of u0. The Picard scheme provides first order accuracy. The second, Newton’s

method, improves the accuracy to second order. It has the form
Uj�Uj�1

Dt ; v
� �

� aðnU n�1
j�1 U j; vxÞ þ ðnU n�1

j�1rW j�1Uj;rvÞ

þðU n
j�1rW j;rvÞ ¼ ðð1� nÞUn

j�1; vxÞ þ ðnU n
j�1rW j�1;rvÞ; 8v 2 Sh;

cðrU j;rvÞ þ bðU j; vÞ � ðW j; vÞ ¼ 0; 8v 2 Sh:

8>><>>: ð5:3Þ
In our numerical simulation Newton’s method is employed to linearize the nonlinear diffusion term D(U),
assuming D(u) is explicitly given in terms of u.
6. The consistency of FEM and PPS

In [78] the authors indicate that it is possible to generalize the positivity-preserving scheme (PPS) to finite
element methods on arbitrary element spaces (including those involving nonuniform grids). They begin by
showing that the 1D PPS finite difference scheme is equivalent to a specific finite element discretization in
which a nonlinear function of the solution is represented in the element basis. This representation suggests
a general abstract finite element approximation of the problem in any space dimension. They then show that
the 2D positivity-preserving scheme is another special case of the general finite element approximation involv-
ing one particular numerical quadrature scheme for the uniform mesh case.

Below we consider again these two examples of 1D and 2D finite element approximation and simply prove
how they are actually equivalent to the general practical finite element approximations based on the schemes
presented in [78].

6.1. 1D FEM

The following finite element approximation, shown to be a positivity-preserving finite difference scheme for
the simplest thin film equation (4.6) is presented in [78]: find (U,W) 2 Sh · Sh such that
ðUt; vÞh þ ðDðUÞoxW ; oxvÞ ¼ 0; 8v 2 Sh;

ðoxU ; oxvÞ ¼ ðW ; vÞh; 8v 2 Sh;

(
ð6:1Þ
where the discrete inner product (Æ,Æ)h is defined by
ðg1; g2Þ
h ¼def
Z

S1

phðg1ðxÞg2ðxÞÞdx 	
X

j

g1ðxjÞg2ðxjÞh; j 2 J : ð6:2Þ
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Here S1 is a periodic domain and ph : CðS1Þ !Th is an interpolation operator such that (phg)(xj) = g(xj)"j.
Taking a nodal numerical quadrature to discretize the continuous inner product (g1,g2), we get
ðg1; g2Þ ¼
X

j

Z
j

g1ðxÞg2ðxÞdx ¼
X

j

X2

j¼1

g1ðxjÞg2ðxjÞ
Dj

2
¼
X

j

X2

j¼1

g1ðxjÞg2ðxjÞ
h
2

¼
X
j2X

g1ðxjÞg2ðxjÞhþ
X
j2oX

g1ðxjÞg2ðxjÞ
h
2
; ð6:3Þ
where Dj is the area of element j. Since X = (S1)d is a periodic domain, no grid point really falls on the bound-
ary, and we can eliminate the second term of (6.3). This implies that
ðg1; g2Þ ¼
X

j

g1ðxjÞg2ðxjÞh ¼ ðg1; g2Þ
h
; ð6:4Þ
i.e. the discrete inner product (6.2) is equivalent to the standard inner product (g1,g2) in terms of the nodal
numerical quadrature (6.3). Furthermore, the corresponding mixed finite element approximation which deter-
mines (U,W) 2 Sh · Sh such that
ðU t; vÞ þ ðDðUÞoxW ; oxvÞ ¼ 0; 8v 2 Sh;

ðoxU ; oxvÞ ¼ ðW ; vÞ; 8v 2 Sh;

(
ð6:5Þ
is also equivalent to the 1D positivity-preserving finite difference scheme in [78].

6.2. Higher dimensional FEM

The general finite element method considered in [78] for the higher dimensional thin film equation (4.6) con-
sists of finding (U,W) 2 Sh · Sh such that
ðU t; vÞI1 þ ðDðUÞrW ;rvÞI2 ¼ 0; 8v 2 Sh;

ðrU ;rvÞI2 ¼ ðW ; vÞI1 ; 8v 2 Sh;

(
ð6:6Þ
Defining the discrete inner product by ðg1; g2Þ
I1 ¼

R
ðS1Þ2 pI1ðg1ðxÞg2ðxÞÞdx to be an associated inner product

on C((S1)2), where pI1 : CððS1Þ2Þ !Th is an interpolation operator, (6.6) is proven to also be a 2D positivity-
preserving finite difference scheme. The term ðn1; n2ÞI2 denotes a numerical quadrature rule replacing an L2(X)
inner product.

More specifically, in the square domain
ðg1; g2Þ
I1 ¼

X
i;j

g1ðxijÞg2ðxijÞhxhy ; i 2 J ; j 2 J ; ð6:7Þ
where hx, hy denote the mesh size in the X and Y directions respectively, and
ðn1; n2ÞI2 ¼
X

i;j

Z xiþ1

xi

1

2
ðn1

1ðx; yjþ1Þn1
2ðx; yjþ1Þ þ n1

1ðx; yjÞn1
2ðx; yjÞhy dx

þ
X

i;j

Z yiþ1

yi

1

2
ðn2

1ðxiþ1; yÞn2
2ðxiþ1; yÞ þ n2

1ðxi; yÞn2
2ðxi; yÞhx dy: ð6:8Þ
For this product, in the first set of terms the integration is performed exactly for the first variable but the trap-
ezoidal rule is used for the second variable. Similarly, in the second set of terms, integration is performed exactly
for the second variable but the trapezoidal rule is used for the first variable. For this specific numerical integra-
tion rule (6.6) is shown to be exactly the 2D positivity-preserving scheme in [78].

We indicate below why the discrete inner product (6.7) is equivalent to the standard inner product (g1,g2)
with the nodal numerical quadrature. By discretizing the continuous inner product (g1,g2) in terms of the
nodal numerical quadrature for a triangular partitioning, we get
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ðg1; g2Þ ¼
X

j

Z
j

g1ðxÞg2ðxÞdx ¼
X

j

X3

j¼1

g1ðxjÞg2ðxjÞ�xj ¼
X

j

X3

j¼1

g1ðxjÞg2ðxjÞ�xjjJjj

¼
X

j

X3

j¼1

g1ðxjÞg2ðxjÞ
2Dj

6
¼
X

j

X3

j¼1

g1ðxjÞg2ðxjÞ
hxhy

6

¼
X
j2X

g1ðxjÞg2ðxjÞhxhy þ
X
j2oX

g1ðxjÞg2ðxjÞ
hxhy

2
; ð6:9Þ
where xj is a vertex of a triangle in the reference coordinate system and �xj is the corresponding weight. For
nodal numerical quadrature on triangles we usually take �xj ¼ 1

6
in the reference triangle element, which cor-

responds to a unit isosceles triangle with a right angle. Jj is the Jacobi transformation matrix between the ori-
ginal and reference coordinate system, so Jj = 2Dj. In the last step of (6.9) we use the fact that for the case of a
uniform mesh in a square domain, every grid point is the common vertex of the surrounding six triangle ele-
ments, the only exception being on the boundary, where three triangles share one grid point.

As in the 1D case, due to the periodic domain X = (S1)2, we can then get rid of the second term (6.9) on oX.
Thus we have
ðg1; g2Þ ¼
X

j

g1ðxjÞg2ðxjÞhxhy ¼ ðg1; g2Þ
h
; ð6:10Þ
which proves that the standard inner product (g1,g2) is equivalent to the discrete inner product (g1,g2)h in
terms of the nodal numerical quadrature. As for the definition (6.8), because it is one kind of special numerical
quadrature for the diffusion terms, the equivalence is trivial on a uniform rectangle mesh in a regular domain.
These imply that the standard mixed finite element approximation which finds (U,W) 2 Sh · Sh such that
ðUt; vÞ þ ðDðUÞrW ;rvÞ ¼ 0; 8v 2 Sh;

ðrU ;rvÞ ¼ ðW ; vÞ; 8v 2 Sh;

(
ð6:11Þ
is equivalent to the 2D positivity-preserving finite difference scheme presented in [78] when corresponding
numerical quadrature formulas are employed.

But for an arbitrary unstructured mesh, the particular numerical quadrature form (6.8) will not again hold.
Even though (6.10) still works for an unstructured mesh, the exact equivalence between the positivity-preserv-
ing finite difference scheme and the general finite element discretization no longer holds, and whether or not
there is an asymptotic equivalence requires further investigation. Regardless, the numerical simulations with
anisotropic adaptive meshes in the latter part of this paper indicate that the general finite element method
works well on unstructured meshes for the thin film flow problem with moving contact line.

In the arbitrary case the PPS cannot be implemented because it is only based on a finite difference approach
and because it requires that the mesh be tessellated. In contrast, the finite element method is straightforward to
implement on an arbitrary unstructured mesh.

In the next sections, we adopt the precursor film model with the initial profile u(x, 0) + b (b relatively small),
but implement a general finite element method on unstructured anisotropic locally refined meshes. It will be
numerically shown that the thickness is still always positive for smaller n in (4.4) on the unstructured meshes,
where a positive numerical solution is also guaranteed in [36] by using PPS and a regularization method (4.7).
We shall see that this generalizes to the finite element method for (4.4) on any arbitrary mesh, but normally
regularization is not necessary.

7. Time stepping

Explicit time stepping procedures present a major challenge for fourth order equations, with the general
time step restriction that Dt be on the order of h4. This restriction, far worse than the corresponding stability
requirement for second order problems, is particularly severe when fine grids are needed to obtain highly
resolved solutions accurately, as is the case for the thin film problem. Reduction of the thin film equation from
fourth order form to a second order system (5.1) is critical when the explicit time stepping is adopted.
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Alternatively, we can use implicit schemes, which require the inversion of a linear system at each time step.
This can become computationally expensive for fine grids. Fortuitously, mesh adaptivity can substantially
reduce the number of grid points and thus computational cost. This has been our experience for the thin film
problem.

We employ higher order backward differentiation formulas (BDF) to approximate the time derivative.
These schemes are well known for being stable with large time step size and have been widely used for solving
stiff ODEs and differential-algebraic equations. For completeness, some BDF formulas we use are summarized
for the model differential equation
ou
ot
¼ f :
Denoting the time level by a subscript j, we have

� Second order BDF formula:
1

2Dt
ð3uj � 4uj�1 þ uj�2Þ ¼ fj: ð7:1Þ
� Fourth order BDF formula:
1

12Dt
ð25uj � 48uj�1 þ 36uj�2 � 16uj�3 þ 3uj�4Þ ¼ fj: ð7:2Þ
For multi-step BDF methods we also need difference formulas for several initial steps. In order not to lose
accuracy, we use several high order finite difference schemes.

� Crank–Nicolson (second order accuracy) using two time levels:
1

Dt
ðuj � uj�1Þ ¼

1

2
ðfj þ fj�1Þ: ð7:3Þ
� Fourth order accuracy using three time levels:
1

2Dt
ðuj � uj�2Þ ¼

1

6
ðfj þ 4f j�1 þ fj�2Þ: ð7:4Þ
� Fourth order accuracy using four time levels:
1

24Dt
ð17uj � 9uj�1 � 9uj�2 þ uj�3Þ ¼

1

4
ðfj þ 3f j�1Þ: ð7:5Þ
Being more accurate and stabler than the lower order ones, the fourth order BDF scheme can enlarge the
time step size and still preserve stability. While an adaptive time stepping procedure can also be used as in
[54] for strongly nonlinear problems with solution having sharp interfaces, this kind of adaptive time step-
ping method is not necessarily efficient if used together with local mesh refinement. Nevertheless, the depen-
dence of the time step size on the mesh size h and the width of the sharp interface e is far from
straightforward to interpret and requires investigation. For simplicity, results given here are for constant
time step size Dt.

8. Numerical results

In this section, we consider the thin film fluid flow equation (4.4) where a = 1, b = 0, c = 1, and consider the
thin film dynamics in a rectangle domain whose lateral dimension is comparable to the wavelength of maxi-
mum growth. We take the domain size as 100 · 16 in the following simulations.

The experiments and numerical simulations done in [54] demonstrate that, when a thin film flows down an
inclined plane, after some time the initially straight line where the liquid, gas and solid phase meet becomes
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unstable with respect to transverse perturbations, and finger-shaped patterns are generated. We consider
mainly the one finger case in our numerical simulation, where the narrow domain results allow for insight into
the fluid instability and the effectiveness of the local mesh refinement.

The simulations are performed using as initial condition
xf ðyÞ ¼ xf0 � A0 cosð2py=k0Þ; ð8:1Þ

where xf0 is the unperturbed position for the front at t = 0, which is perturbed by a single transverse mode
characterized by the wavelength k0 = Ly. The perturbation is characterized by a small amplitude A0 and a
phase such that this initial condition satisfies ou

oy ¼ 0 at y = 0, Ly. As a representative case, we use Ly = 16,
and the size of the computational domain varies between Lx = 50 and LX = 100. Most of the computations
are performed using a precursor film of thickness b = 0.01.

The numerical results for our adaptive mixed finite element approximation (5.3) and anisotropic mesh
refinement technique in the case of n = 3, b = 0.01 are shown in Figs. 4–11. The precursor film model with
u(x, 0) + b as the initial film is employed, but the regularization method is unnecessary for this power n.

The main feature of the profile u(x, t) is the presence of a bump near the contact line. This bump, resulting
from the fluid accumulation behind the front, is due to the fact that the viscous stress on the plane is much
greater in the contact line region than in the fluid bulk. The increased viscous stress is balanced by the com-
ponent of the bump weight in the down-slope direction. The presence of the bump is a necessary condition for
the instability of the fluid to small perturbations in the transverse direction [68,18,67].

In the above simulations, the smallest edge length of the anisotropic mesh around the moving contact line is
about 0.1, in contrast with the uniformly distributed mesh size of 8.0 in the flat solution regions. The smallest
aspect ratio of mesh elements around the moving contact line is roughly 1:7. (Incidentally, note that the initial
mesh is generated by an automatic mesh generator, so that a slight asymmetry is present in the adaptive
meshes computed using a posteriori error estimation, although the approximate solution itself is basically sym-
metric in y.) Corresponding to these mesh sizes, the total number of triangles for each step is on average
around 1600. In the domain 100 · 16, having commensurate mesh sizes in the moving contact region would
require around 320,000 elements with a uniform triangulation, which is about 200 times larger. The compu-
tational cost for such a uniform mesh would easily be prohibitive. For example, in [54], using a uniform mesh
of size 0.5, five times the mesh size 0.1, the computing times on the fastest available workstations (R12000
CPU) vary between 15 and 20 h for the smaller typical simulations to a couple of weeks for large simulations
in order to get relatively accurate solutions.

In order to show quantitatively the improvement of our adaptive algorithm over a standard method on uni-
form grids, we carry out the following numerical experiments: compute the solution to the same problem with
the adaptive FEM on an adaptive mesh and the standard FEM on a uniform mesh. In the first step, we try to
let the meshes have the same number of triangles. Then we double the resolution for the uniform mesh only, so
the number of triangles is quadruple that of the adaptive mesh. By comparing these two solutions for the
Fig. 4. Global solution at T = 1 for n = 3, b = 0.01.



Fig. 5. Local solution at T = 1 for n = 3, b = 0.01.

Fig. 6. Global solution at T = 25 for n = 3, b = 0.01.

Fig. 7. Local solution at T = 25 for n = 3, b = 0.01.
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standard FEM with the solution for the adaptive FEM at the same time point, we can better understand how
much more accurate our adaptive method is in contrast to the standard FEM.

First of all, in the domain 100 · 16 we take the uniform mesh with 1722 triangles to match our adaptive
mesh density (with 1537 triangles) at T = 20. Secondly, we globally refine the uniform mesh with half the mesh
size to get 6752 triangles. After doing the computation with the standard FEM on both meshes, we get the



Fig. 10. Global solution at T = 75 for n = 3, b = 0.01.

Fig. 8. Global solution at T = 50 for n = 3, b = 0.01.

Fig. 9. Local solution at T = 50 for n = 3, b = 0.01.
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results shown in Figs. 12–14, together with the solution on the adaptive mesh at time point T = 20. For this
value of T, the differences in speed and shape of the contact line are apparent for these approximate solutions.

The local blow-up behaviors are shown in Fig. 15. Figs. 16–18 show the corresponding 1-dimensional pro-
files of the moving contact lines.

These pictures indicate that when the mesh size is decreased, the solution for the standard FEM is approx-
imating that for the adaptive FEM on the coarsest mesh level. A measure of accuracy for the uniform mesh
solutions is also exhibited in Table 1, where the following calculation of the approximation error is computed:



Fig. 11. Local solution at T = 75 for n = 3, b = 0.01.

Fig. 12. Global solution at T = 20 for n = 3,b = 0.01 on 1722 uniform grids.

Fig. 13. Global solution at T = 20 for n = 3, b = 0.01 on 6752 uniform grids.

P. Sun et al. / Journal of Computational Physics 224 (2007) 1021–1048 1041
approximation error ¼ kuuniform � uadaptivekL2

kuadaptivekL2

;

where uuniform denotes the solution for the uniform mesh with different resolutions, and uadaptive denotes the
solution for the adaptive mesh with the almost same number of triangles as for the coarsest uniform mesh.



Fig. 14. Global solution at T = 20 for n = 3, b = 0.01 on 1537 adaptive grids.

Fig. 15. The comparison of standard FEM and adaptive FEM on two uniform meshes and one adaptive mesh, respectively, at T = 20 for
n = 3, b = 0.01.
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In the calculation, we interpolate the solution for the uniform mesh onto that for the adaptive mesh. Since we
are only using linear finite element to compute the solutions, linear interpolation is used for these error
calculations.

Table 1 indicates that at T = 20, a typical time point, the approximations of the solutions for the uniform
meshes become close to the solution for the adaptive mesh with the almost same number of triangles as for the
coarsest uniform mesh, as the uniform meshes are refined.

While the convergence theories for the adaptive and standard numerical methods are quite different, specific
accuracy comparisons between the solutions on adaptive and unadaptive meshes are complicated, but based
on the decreasing approximation error in Table 1 and the approximate moving contact line images in the fig-
ures, we can conclude that our adaptive algorithm obtains an accuracy which the standard FEM would
achieve only with substantially more elements. In summary, our adaptive finite element method works very
well around the contact line, with the locally refined meshes appearing to closely match the contact line. Since
only the meshes which distribute elements along the moving contact line are able to resolve the singularity and
improve the accuracy, getting commensurate numerical results with a uniform mesh would be extremely dif-
ficult if not impossible.

We have also applied the AFEM for various values of the power n and precursor thickness b successfully
without need for the regularization (4.7). This is in contrast with previous results where regularization together
with PPS on fine grids are used for the case of small n and b (e.g. see [54]).

Realistic results obtained for b = 0.001 and n = 3 are shown in Figs. 19 and 20.
For the case n = 1, we get the results shown in Figs. 21 and 22 for the small precursor film b = 0.001. We see

from these results that for the case of small n(=1), the bump near the contact line is gradually smeared, viz.,
stabler fluid flow is obtained with a smaller power n. Again, no regularization (4.7) is used to resolve the con-
tact line accurately with the help of an adaptive local refinement. This is still in contrast with the numerical
experiments of [54], where it is used for n 6 2.



Fig. 16. Moving contact line on coarse uniform mesh.

Fig. 17. On fine uniform mesh with quadruple number of elements as coarse uniform mesh.

Fig. 18. On adaptive mesh with almost same number of elements as coarse uniform mesh.

Table 1
The approximation error at T = 20 to the solution on adaptive mesh with the almost same number of triangles as for the coarsest uniform
mesh

No. of elements of uniform meshes Approximation errors

1722 0.09237
6752 0.03181

27258 0.01415

Fig. 19. Global solution at T = 25 for n = 3, b = 0.001.
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Fig. 20. Local solution at T = 25 for n = 3, b = 0.001.
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According to our theory, the mesh density and anisotropy depend on the singularity of the solution u. For
thin film flow, the moving contact line is the place where the singular sharp interface happens. The more dra-
matic the singularity is, the more anisotropic and denser the adaptive mesh will get, as is measured by the Hes-
sian matrix of the solution u. For the case of a smaller power n < 2, since the moving contact lines are no
longer sharp after some time, the corresponding adaptive meshes are not dramatically anisotropic.
Fig. 21. Global solution at T = 25 for n = 1, b = 0.001.

Fig. 22. Local solution at T = 25 for n = 1, b = 0.001.



Fig. 23. Multiple fingers on the adaptive mesh.

Fig. 24. Multiple fingers in 3D visualization.
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As a final example, we show numerical results of a multi-finger phase computation. Figs. 23 and 24 give the
computed solution for the thin film fluid flow with a three fingers phase.

9. Conclusions

In this paper, we have presented a detailed implementation of an adaptive finite element method (AFEM)
and demonstrated that it can perform very well on a challenging problem like the thin film problem with a
moving contact line. The results for our anisotropic AFEM are consistent with those obtained previously,
most using the positivity-preserving finite difference method [19,14,1,53,35,54]. It requires much fewer grid
points for comparable accuracy than with the uniform grid (which still needs roughly the same density around
the contact line).

We prove a close relationship between the finite element method on a structured mesh and one kind of pos-
itivity-preserving scheme (PPS). Unlike the PPS and other finite difference methods which require structured
meshes, the finite element method is straightforward to apply for unstructured grids. Based on the numerical
results, good local refinement gives in turn an accurate approximation along the contact lines, which stays
positive without the need for any regularization, even for an extremely low precursor film case.

Using an anisotropic locally refined mesh, along with local smoothing and edge swapping techniques to
improve the mesh quality, we are able to get very long thin elements along finger-shaped contact lines by con-
centrating the grid points on the sharp interface. Theoretically, this kind of anisotropic mesh is optimal or
quasi-optimal in the sense of reducing the interpolation error. Practically, it is able to obtain a numerical
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solution at minimal cost since the grid points are only concentrating around the moving contact line where the
solution is of greatest interest.

To our knowledge, this is the first application of a fully adaptive finite element method which produces both
anisotropic and unstructured locally refined meshes to solve the fourth order thin film fluid flow problem in
2D. The successful numerical simulations demonstrate that our adaptive finite element method has good per-
formance, even for the case of small powers n < 3 and small thickness of precursor film b 6 10�3, without the
need to use the regularization method. This is in contrast to the previously used finite difference methods, even
with the PPS, for small values of the parameter sets (n,b) on related problems [53,35,54]. In the recent paper
[10], some interesting theoretical and computational challenges for similar problems are laid out, and a finite
element method using nonuniform but isotropic meshes is used to study them numerically. A further study of
these problems and comparison of this and the other popular algorithms to our adaptive approach should
prove most fruitful and is a matter we intend to pursue.
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